О возможности использования выходной продукции глобальной модели атмосферы GFS NCEP в экологических исследованиях
Резюме
Проведена оценка степени совпадения прогностических значений стратификации атмосферы с нарастающей заблаговременностью 24 часа, полученных из глобальной модели атмосферы GFS NCEP (Global Forecast System National Centers for Environmental Prediction) с фактическими данными аэрологического зондирования на основе корреляционного анализа. Актуальность работы заключается в том, что в настоящее время количество опасных природных явлений продолжает увеличиваться, в том числе и загрязнение атмосферы примесями, приводящими к глобальному потеплению. При прогнозировании опасных явлений для экологии входными данными являются значения полей метеопараметров по фактическим данным аэрологического зондирования атмосферы. Такие данные доступны только на отдельных метеостанциях, расположенных достаточно далеко друг от друга, что усложняет проведение исследований. Между тем инструменты для анализа и оценки распространения и рассеивания загрязняющих веществ в атмосфере в настоящее время получили значительное развитие. Сдерживающим фактором их более широкого применения заинтересованными структурами по прогнозированию качества воздуха, аварийно-спасательными службами, представителями авиации, государственными учреждениями и сообществом исследователей атмосферы является недостаток информации о текущем состоянии атмосферы, а также получение прогностических метеопараметров. Для решения этой проблемы предлагаются использовать данные глобальной модели атмосферы GFS NCEP. Целью исследования является определить правомерность замены фактических данных аэрологического зондирования атмосферы на прогностические поля стратифицированных метеопараметров из глобальной модели атмосферы. Методом исследования является один из методов статистического анализа данных корреляционный анализ. В результате исследований получено, что коэффициенты корреляции между прогностическими и фактическими значениями температуры воздуха, температуры точки росы, скорости и направления ветра имеют высокие значения. Это делает возможными использование данных глобальной модели при математическом моделировании распространения загрязнения в атмосфере, а также прогнозе опасных стихийных явлений, таких как паводок, сильный ливень, град, сель, приводящих к нарушению природных экологических систем.