АНАЛИТИЧЕСКОЕ ПРОДОЛЖЕНИЕ ПОТЕНЦИАЛЬНЫХ ПОЛЕЙ НА ОСНОВЕ F-АППРОКСИМАЦИИ

© 2015 И.А. Керимов, д.ф.-м.н., проф.

Институт физики Земли им. О.Ю. Шмидта РАН,123995, г. Москва, ул. Б. Грузинская, д. 10, стр. 1, e-mail: kerimov@ifz.ru

В статье рассмотрен метод аналитического продолжения потенциальных полей на основе F-аппроксимации. Разработанный автором метод позволяет выполнять аналитическое продолжение поля в верхнее и нижнее полупространство. Компьютерные технологии позволяют выполнять трансформации для данных заданных как для регулярной, так и для нерегулярной сети. Метод апробирован на модельных и фактических гравиметрических данных.

Ключевые слова: аппроксимация, аналитическое продолжение, гравитационное поле, трансформация.

Трансформации аномалий силы тяжести (нахождение пространственного распределения поля и его производных, разделение полей, осреднение, сглаживание, пересчет их в некоторые другие функции и др.) достаточно широко применяются в практике обработки и интерпретации гравитационных данных. Как известно, гравитационному потенциалу и его производным присуще так называемое свойство аддитивности, которое заключается в том, что значение функции от суммы аргументов равняется сумме значений функции от каждого аргумента в отдельности [Гравиразведка, 1990; Страхов, 1999; Страхов и др., 2000].

Наблюдаемые гравитационные аномалии Буге являются суммарными аномалиями, представляющими совокупность аномалий, обусловленных структурно-тектоническими особенностями осадочного чехла земной коры, строением кристаллического фундамента, глубинным строением Земли и верхней мантии и другими геологическими факторами.

Любая трансформация гравитационных аномалий выполняется на основе априорных предпосылок (диапазон глубин, в котором заключены источники аномалий, либо минимальные и максимальные значениями градиента поля и др.). При трансформациях полагают, что порядок интенсивности и размеры аномалий силы тяжести соответствуют порядку геологических структур. Для более полного разделения гравитационных аномалий от различных геологических объектов привлекают дополнительную геологическую информацию.

При разделении аномальных полей используют трансформации, основанные:

а) на уменьшении амплитуды аномалий части источников (пересчет в верхнее пространство);

б) на усилении амплитуды аномалий части источников (аналитическое продолжение в нижнее полупространство и др.);

в) на локализации аномалий от отдельных тел (аналитическое продолжение в нижнее полупространство, пересчет в высшие производные потенциала). К числу важнейших трансформаций гравитационных полей и наиболее широко употребляющимся относятся аналитическое продолжение в верхнее и нижнее полупространство, а также вычисление горизонтальных и вертикальных производных.

Трансформации наблюденного поля необходимы с целью решения трех задач – обнаружение объекта поиска, т. е. обнаружение аномалии этого объекта, затем локализация объекта в измеренном поле и, наконец, его детальное описание.

Разработка методов трансформации потенциальных полей имеет значительную историю, начиная с конца 20-х годов прошлого века [Гравиразведка, 1990; Страхов, 1999; Страхов и др., 2000]. Пятидесятые и шестидесятые годы прошлого века характерны тем, что в мире начаты планомерные гравиметрические и магнитометрические съемки на огромных территориях. Полученный огромный объем измерений элементов гравитационного и магнитного полей надо было не только обработать и представить в числовом и графическом виде, но также преобразовать с целью фильтрации наблюдений, пересчитать одни элементы поля в другие и т. д.

В этот период были разработаны палеточные методы для вычисления сглаженного поля, пересчета его на высоту и вычисления вертикального градиента (Б.А. Андреев, 1947; К.Е. Веселов, 1958; М.У. Сагитов, 1960; Ступак, Г.Я. Голиздра, 1963; К.Ф. Тяпкин, Г.Я. Голиздра, 1963) и первые компьютерные методы трансформации по значениям элементов поля в узлах квадратной или прямоугольной сетки.

В 60-е годы в отечественной литературе появились исследования о построении наилучших вычислительных схем для трансформации потенциальных полей, заданных на квадратной или прямоугольной сети (В.Н. Страхов 1963, 1966). О.К. Литвиненко с сотрудниками (1967) начала компьютерную реализацию трансформаций трехмерных полей. Характерной особенностью исследований отечественных геофизиков в области трансформаций было то, что с самого начала значительное внимание уделено преобразованию масс в связи с трансформацией полей. Начало положено работой А.Н. Тихонова и Ю.Д. Буланже (1945), а затем продолжено в ряде других исследований (К.Ф. Тяпкин, Г.Я. Голиздра, 1963 и др.).

Отметим также, что отличительная особенность направления исследований отечественных геофизиков в области трансформаций состояла в том, что большое внимание уделялось проблеме аналитического продолжения потенциальных полей. Сначала изучено аналитически, а затем реализовано численно продолжение полей в верхнее полупространство (Андреев, 1947; Литвиненко и др., 1967; Страхов, 1963, 1966). Были начаты серьезные исследования по проблеме продолжения поля в нижнее полупространство, в сторону возмущающих масс (Андреев, 1947; Воскобойников, Начапкин, 1969; Голиздра, 1963, 1966; Литвиненко и др., 1970; Малкин, 1930; Маловичко, 1956; Цирульский, 1963). Изучено также распределение особых точек продолженного поля внутрь масс и изучены методы их локализации (Андреев, 1947; Воскобойников, Начапкин, 1969; Голиздра, 1963, 1966; Литвиненко и др., 1970; Трошков, 1978; Трошков, Грознова, 1980 и др.). Задача продолжения полей в нижнее полупространство некорректная и ее реализация потребовала больших усилий со стороны отечественных исследователей (Мудрецова, 1982; Страхов, 1963; Тихонов и др., 1968; Трошков, 1978; Трошков, Грознова, 1980 и др.). Серьезные исследования по проблеме продолжения полей выполнены и зарубежными исследователями (Baranov, 1975; Bullard, Cooper, 1948; Henderson, 1960; Huestis, Parker, 1979 и др.).

Частным случаем продолжения является проблема приведения измерений потенциальных полей к единому уровню. Самые разные аналитические подходы использованы отечественными и зарубежными исследователями для решения этой задачи (Алексидзе, Санадзе, 1968; Аронов, 1976; Бережная, Телепин, 1976; Страхов, 1966, 1992; Ступак, Голиздра, 1963; Цирульский, 1968 и др.). Задача получила исчерпывающее решение и для ее реализации составлены многочисленные компьютерные программы.

Большой проблемой в трансформации полей явилось то, что долгие годы отсутствовал единый математический подход, пригодный для устойчивого и точного нахождения трансформаций. В настоящее время такой подход найден ([Страхов, 1992]; Dampney, 1969; Emilia, 1973 и др.). Он заключается в том, что наблюденное поле сначала достаточно точно аппроксимируется совокупностью полей элементарных моделей – материальная точка, линия, пластинка и т. д. Если такая аппроксимация истокообразными функциями выполнена, то трансформации находятся затем решением прямой задачи для найденных элементарных моделей ([Страхов, 1992]; Dampney, 1969; Emilia, 1973). Указанный выше подход в численном нахождении трансформаций потенциальных полей является универсальным. При хорошо развитом алгоритме аппроксимации таким путем можно реализовать не только корректные, но и некорректные трансформации, например, нахождение производных. За рубежом методы трансформации продолжают активно развиваться (Wybraniec, 1999; Wybraniec et al., 1998).

Следует отметить, что большинство процедур трансформаций (аналитическое продолжение в сторону возмущающих масс, пересчет в высшие производные потенциала), обладающих наибольшей разрешающей способностью, являются неустойчивыми.

В настоящее время существует большое количество методов трансформации потенциальных полей, достаточно широко опубликованных в геофизической литературе. Недостатком большинства существующих методов является их неадекватность реальной геофизической практике (не учет нерегулярности и разновысотности гравиметрических сетей и другие идеализации).

Недостатки существующих методов были устранены при использовании аппроксимационного подхода к спектральному анализу, основанном на методе линейных интегральных представлений В.Н. Страхова [Керимов, 2003, 2011а; Страхов, 1999; Страхов, Керимов, 2001; Страхов и др., 2009]. Теоретические основы, алгоритмы и компьютерные программы аппроксимационного подхода к спектральному анализу, получившего название метод F-аппроксимации описаны в ряде работ [Керимов, 2003, 2009а, б, 2011а, б; Страхов и др., 2009]. Результаты апробирования метода на модельных и фактических геофизических данных, заданных на нерегулярной сети, позволили сделать вывод о высокой точности восстановления поля путем F-аппроксимации [Керимов, 2009а, б, 2011а; Страхов и др., 2009]. Метод F-аппроксимации позволяет также принципиально по-новому решать ряд вопросов трансформаций потенциальных полей.

В данной статье рассмотрены алгоритмы и компьютерные технологии нахождения линейных трансформаций потенциальных полей, а именно нахождение пространственного распределения поля и его производных на основе F-аппроксимации. Приводятся также результаты опробования алгоритмов и компьютерных технологий на модельных и практических геолого-гравиметрических материалах. В предыдущих работах [Керимов, 2003, 2009а, б, 2011а, б; Страхов и др., 2009] было получено выражение для первой вертикальной производной гравитационного потенциала:

$$V_{z}(\xi_{1,l},\xi_{2,l},\xi_{3,l}) = \frac{3}{2\pi} \sum_{k=1}^{N} \lambda_{k} \frac{(2z_{k,l}^{2} - 3p_{k,l}^{2}) \cdot z}{(z_{k,l}^{2} + p_{k,l}^{2})^{\frac{7}{2}}},$$
(1)

где

$$p_{k,l} = \sqrt{\left(x_{1,k} - \xi_{1,l}\right)^2 + \left(x_{2,k} - \xi_{2,l}\right)^2} \tag{2}$$

$$z_{k,l} = x_{3,k} + \xi_{3,l} + 2H \tag{3}$$

С учетом (1) и (2) окончательно имеем формулы для расчета различных элементов гравитационного поля на заданном уровне h (h<H):

$$V_{z}(\xi_{1,l},\xi_{2,l},h) = \frac{3}{2\pi} \sum_{k=1}^{N} \lambda_{k} \frac{(2(z_{k,l}+h)^{2}-3p_{k,l}^{2}) \cdot (z+h)}{(z_{k,l}+h)^{2}+p_{k,l}^{2})^{3.5}}$$
(4)

$$V_{zz}(\xi_{1,l},\xi_{2,l},h) = \frac{15}{\pi} \sum_{k=1}^{N} \lambda_k \frac{8(z_{k,l}+h)^4 - 24\rho_{k,l}^2(z_{k,l}+h)^2 + 3p_{k,l}^4}{((z_{k,l}+h)^2 + \rho_{k,l}^2)^{4.5}}$$
(5)

$$V_{xz}(\xi_{1,l},\xi_{2,l},h) = \frac{15}{\pi} \sum_{k=1}^{N} \lambda_k \frac{(x_{1,k} - \xi_{1,l})(3\rho_{k,l}^2 - 4(z_{k,l} + h)^3)}{((z_{k,l} + h)^2 + \rho_{k,l}^2)^{4.5}},$$
(6)

$$V_{yz}(\xi_{1,l},\xi_{2,l},h) = \frac{15}{\pi} \sum_{k=1}^{N} \lambda_k \frac{(x_{2,k} - \xi_{2,l})(3\rho_{k,l}^2 - 4(z_{k,l} + h)^3)}{(z_{k,l}^2 + \rho_{k,l}^2)^{4.5}},$$
(7)

$$V_{sz}(\xi_{1,l},\xi_{2,l},h) = \frac{15}{\pi} \sum_{k=1}^{N} \lambda_k \frac{(3\rho_{k,l}^2 - 4(z_{k,l} + h)^3)p_{k,l}}{(z_{k,l}^2 + \rho_{k,l}^2)^{4.5}},$$
(8)

$$V_{zzz}(\xi_{1,l},\xi_{2,l},h) = \frac{75}{\pi} \sum_{k=1}^{N} \lambda_k \frac{z_{k,l}(8(z_{k,l}+h)^4 - 40\rho_{k,l}^2(z_{k,l}+h)^2 + 15\rho_{k,l}^4)}{((z_{k,l}+h)^2 + \rho_{k,l}^2)^{5.5}}.$$
 (9)

Полученные формулы (4-9) могут быть использованы для пересчета поля силы тяжести и его производных на заданный уровень h как на нерегулярной, так и на регулярной сети.

С целью оценки точности аналитического продолжения гравитационного поля на основе F-аппроксимации были выполнены расчеты на модельных участках № 1-№ 3. Используемые модели описаны в работах [Керимов, 2003, 2011а; Страхов и др., 2009]. Результаты расчетов приведены в таблицах № 1-3.

Для оценки относительной точности аппроксимации использовалась следующая мера:

$$\gamma_{k} = \frac{\left\| f_{ucm} - f_{_{6bi4}}^{(k)} \right\|_{E}}{\left\| f_{ucm} \right\|_{E}},$$
(10)

где

f_{ucm} – исходные (в случае модельных примеров точное) значения гравитационного (магнитного) поля;

 $f_{Bbiy}^{(k)}$ – восстановленные по результатам аппроксимации значения поля при решении СЛАУ (система линейных алгебраичных уравнений) различными методами.

Для оценки среднеквадратических погрешностей аппроксимации, построенных при решении СЛАУ использовалась следующая формула:

$$\sigma_{k} = \frac{\left\| f_{_{\theta b u u}}^{(k)} - f_{u c m} \right\|_{E}}{\sqrt{N}} \tag{11}$$

Таблица 1

Уровень пересчета	Кконтр=6000		Кконтр=4628	
	γ	σ, мГал	γ	σ, мГал
2.5	0.09517	0.600	0.03176	0.198
2.0	0.07295	0.470	0.02227	0.142
1.5	0.04752	0.314	0.01309	0.086
1.0	0.01859	0.126	0.00485	0.033
0.5	0.02013	0.140	0.00618	0.043
0.0	0.06302	0.450	0.01439	0.102
-0.5	0.11960	0.880	0.02369	0.173
-1.0	0.19891	1.508	0.03642	0.274
-1.5	0.32234	2.525	0.06055	0.472
-2.0	0.53859	4.370	0.11583	0.935
-2.5	0.95865	8.085	0.24673	2.072

Модельный пример №1

На рис. 1-10 приведены карты аналитического продолжения аномального гравитационного поля на различные уровни и соответствующие карты разностных полей. Результаты аналитического продолжения гравитационного поля для Сереговской площади приведены на рис. 11.

Уровень пересчета	Кконтр=6000		Кконтр=4628	
	γ	σ, мГал	γ	σ, мГал
2.5	0.08977	0.566	0.02977	0.185
2.0	0.06808	0.439	0.02048	0.131
1.5	0.04354	0.288	0.01147	0.075
1.0	0.01590	0.108	0.00312	0.021
0.5	0.01863	0.130	0.00596	0.041
0.0	0.05706	0.408	0.01375	0.097
-0.5	0.10536	0.775	0.02158	0.158
-1.0	0.17131	1.299	0.03121	0.235
-1.5	0.27711	2.170	0.05010	0.390
-2.0	0.48298	3.918	0.09949	0.803
-2.5	0.94158	7.941	0.22762	1.912

Модельный пример №2

Таблица 3

Таблица 2

модельный пример № 3							
Уровень пересчета	Кконтр=6000		Кконтр=4724				
	γ	σ, мГал	γ	σ, мГал			
4.0	0.15207	0.580	0.09161	0.346			
3.5	0.13719	0.547	0.07844	0.311			
3.0	0.12109	0.506	0.06514	0.270			
2.5	0.10346	0.453	0.05178	0.226			
2.0	0.08387	0.386	0.03851	0.176			
1.5	0.06182	0.299	0.02552	0.123			
1.0	0.03664	0.187	0.01309	0.067			
0.5	0.00802	0.043	0.00212	0.011			
0.0	0.02737	0.157	0.00977	0.056			
-0.5	0.07035	0.429	0.02182	0.133			
-1.0	0.14445	0.944	0.05092	0.333			
-0.5	0.07035	0.429	0.02182	0.133			

Модельный пример №3

10.0-

20.0-

30.0-

40.0-

-0.06

100.01

80.0-

70.0-

-0.09

50.0-

шא ,Υ

Аналитическое продолжение гравитационного поля.

Выводы

Анализ расчетов аналитического продолжения гравитационного поля, выполненных по модельным участкам позволяет сделать следующие выводы.

1. F-аппроксимация является эффективным способом аналитического продолжения гравитационного поля в верхнее и нижнее полупространства.

2. Точность аналитического продолжения гравитационного поля зависит от степени выхода последнего на нормальное поле. Как видно из таблиц 1-3, точность продолжения на модельном участке №2 больше, чем на участке №1, в свою очередь точность на участке №3 больше, чем на участке №2. Как отмечалось выше эти участки отличаются степенью выхода в нормальное поле.

3. Периферийные участки (около 5% от всей площади вносят максимальный вклад в погрешность). Погрешность аналитического продолжения без учета точек периферийной зоны значительно ниже погрешности аналитического продолжения по всем точкам.

Литература

1. Гравиразведка: Справочник геофизика / Под ред. Мудрецовой Е.А. и Веселова К.Е. М.: Недра, 1990. 607 с.

2. Керимов И.А. Использование F-аппроксимации при интерпретации гравиметрических данных. I. Методика и результаты опробования на модельных примерах // Физика Земли, 2003. № 1. С. 57-76.

3. Керимов И.А. Использование F-аппроксимации при интерпретации гравиметрических данных. II. Результаты опробования на материалах гравиметрических и магнитометрических съемок // Физика Земли, 2009а. №.5. С. 77-93.

4. Керимов И.А. Метод F-аппроксимации при решении задач гравиметрии и магнитометрии. М.: Физматлит, 2011а. 264 с.

5. Керимов И.А. Теория и компьютерные технологии аналитических аппроксимаций аномальных потенциальных полей // Геология и геофизика Юга России, 2011б. № 2. С. 50-63.

6. Керимов И.А. F-аппроксимации рельефа земной поверхности // Физика Земли, 2009б. №.8. С. 101-112.

7. Страхов В.Н. Алгоритмы редуцирования и трансформаций аномалий силы тяжести, заданных на физической поверхности Земли // Интерпретация гравитационных и магнитных полей. Киев: Наукова думка, 1992. – С. 4-81.

8. Страхов В.Н. Три парадигмы в теории и практике интерпретации потенциальных полей (анализ прошлого и прогноз будущего). М.: ОИФЗ РАН, 1999. 78 с.

9. Страхов В.Н., Голиздра Г.Я., Старостенко В.И. Развитие теории и практики интерпретации потенциальных полей в XX веке // Физика Земли. 2000. № 9. С. 41-64.

10. Страхов В.Н., Керимов И.А. Аппроксимационные конструкции спектрального анализа (F-аппроксимация) гравиметрических данных // Физика Земли, 2001. № 12. С. 3-20.

11. Страхов В. Н., Керимов И. А., Степанова И. Э. Разработка теории и компьютерной технологии построения линейных аналитических аппроксимаций гравитационных и магнитных полей. М.: ИФЗ РАН, 2009. 254 с. DOI: 10.23671/VNC.2015.1.55234

ANALYTICAL CONTINUATION OF POTENTIAL FIELDS ON THE BASIS OF F-APPROXIMATIONS

© 2015 I.A. Kerimov, Sc.Doctor (Phys.-Math.), prof.

The Institute of physics of the Earth named after O. Schmidt of RAS,123995, Moscow, B. Gruzinskaya street, 10/1, e-mail: kerimov@ifz.ru

The method of analytical continuation of potential fields on the basis of F-approximation is considered in the article. The method developed by the author allows carrying out analytical continuation of field to the upper and the lower half-space. Computer technologies allow making transformations for data prescribed both for regular and for irregular network. The method is tested on model and actual gravimetric data.

Key words: approximation, analytical continuation, gravity field, transformation.