## ВУЛКАНИТЫ С ХАРАКТЕРИСТИКАМИ АДАКИТОВ ИЗ ВЕРХНЕПЛИОЦЕНОВЫХ РАЗРЕЗОВ ТЕРСКО-КАСПИЙСКОГО КРАЕВОГО ПРОГИБА

## © 2018 В.М. Газеев<sup>1, 2</sup>, к.г-м.н., А.Г. Гурбанов<sup>1, 2</sup>, к.г-м.н., Ю.В. Гольцман<sup>1</sup>, к.г-м.н., Т.И. Олейникова<sup>1</sup>, А.Б. Лексин<sup>1</sup>, А.Я. Докучаев<sup>1</sup>, к.г-м.н.

<sup>1</sup>ФГБУН Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН, Россия, 119017, г. Москва, Старомонетный пер.,35;

<sup>2</sup>ФГБУН Федеральный научный центр «Владикавказский научный центр РАН», Россия, 362027, РСО-Алания, г. Владикавказ, ул. Маркуса, 22, e-mail: gurbanov@igem.ru.

В Осетинской впадине, Терско-Каспийского краевого прогиба, в разрезе акчагыл-апшеронских отложений залегает толща, содержащая большое количество переотложенного вулканического материала. Проведено петрографическое и геохимическое изучение этих вулканитов. Приведены результаты *RFA*, *ICP-MS*, изотопного (*Rb*, *Sr*, *Sm*, *Nd*) анализа пород. Показано, что вулканиты обладают адакитоподобными характеристиками. Рассмотрены вопросы потенциальной рудоносности этих пород. Сделано предположение о том, что зоны вторичных изменений (пропилитизации) в пределах вулканических аппаратов, служивших источником сноса вулканического материала, могут содержать золото-серебрянное с висмутом оруденение.

**Ключевые слова**: Терско-Каспийский краевой прогиб, вулканиты, петрография, геохимия, геодинамические реконструкции, потенциальная рудоносность.

## Краткая геология Терско-Каспийского краевого прогиба и свиты Рухс-Дзуар

Терско-Каспийский краевой прогиб (ТККП) расположен в восточном Предкавказье и как самостоятельная геологическая структура развивается с тарханско-конского времени (17,4–12,8 млн. лет назад). На северо-западе он граничит с эпипалеозойской Скифской плитой, на западе – обрамляется Минераловодским выступом, на юге - складчатым сооружением Большого Кавказа (БК). Поверхность палеозойского фундамента ТККП расположена на глубинах от 2-6 до 12 км и ступенчато погружается с запада на восток, а также с севера и с юга в сторону осевой части прогиба [Клавдиева, 2007]. В основании чехла залегают пестроцветные песчаники триаса, а выше них – юрские, меловые, палеоцен-эоценовые, олигоцен-нижнемиоценовые терригенные и карбонатные толщи, и моласса среднего миоцена-квартера. В раннем акчагыле длительное конседиментационно-прерывистое развитие структуры ТККП было резко нарушено проявлением интенсивного тектогенеза. В результате тектонических напряжений молассы среднего и верхнего миоцена местами смяты в узкие асимметричные антиклинали, осложненные надвигами и взбросами. Плиоцен-четвертичные молассы практически не дислоцированы [Марков и др., 2000]. В акчагыл (3,6-1,5 млн лет) – апшеронских (1,5-0,79 млн лет) отложениях ТККП залегает терригенная толща, содержащая большое количество переотложенного вулканического материала, выделенная В.П. Рентгартером в 1932 г. как свита Рухс-Дзуар (СРД). На поверхности фрагменты ее разреза присутствуют в моноклинали Черных гор, залегая с размывом и угловым несогласием на подстилающих толщах. По данным бурения они известны в Кабардинской и Осетинской впадинах ТККП (рис. 1). Терригенная толща СРД сложена слабо сцементированными валунно-галечниковыми конгломератами, переслаивающимися с прослоями гравелитов, песков, глин и суглинков. Характерной ее особенностью является преобладание галек и валунов эффузивных и кристаллических пород над осадочными. Местами, в ее разрезе присутствуют прослои (мощностью до 5-6 м), сложенные преимущественно вулканогенным материалом и горизонты (мощностью до 60–80 м), обогащенные вулканогенным материалом. Общее содержание переотложенного вулканического материала достигает 25–30% от объема пород свиты, а иногда и более. Мощность отложений СРД варьирует от 400 до 1200 м [Белуженко и др., 2009].



Рис. 1. Местоположение Осетинской впадины на карте региона и ее тектоническая схема. Дополнительно нанесены скрытые купольно-кольцевые структуры Владикавказской (Осетинской) котловины: I – Чиколинская, II – Нартовская, III – Назрановская. По материалам Владикавказской ГРЭ и [Марков и др., 2000].

Фактический материал и методы его исследования

В 2005 и 2010–2012 гг. сотрудниками Лаборатории петрографии ИГЕМ РАН и ВНЦ РАН были отобраны представительные образцы из главных разновидностей вулканитов СРД. Опробование проводилось на территории республики Северная Осетия-Алания: в обнажениях и русловом аллювии по долинам рек Ардон, Суадаг, Терек (район Эльхотовских ворот), Кабагалдон, Цраудон, Хусфарах, Скумлендон, Змисджиндон, Гизельдон, Бадзидон, Савнердон. При финансовой поддержке НИР КНИО ВНЦ РАН (тема №1) из собранных образцов были изготовлены шлифы и проведено их петрографическое изучение. Аналитические работы выполнены в

ЦКП «ИГЕМ–Аналитика»: Проведены определения концентраций петрогенных и микроэлементов рентгено-флюоресцентным анализом (*XRF*), рудных, редких и редкоземельных элементов, а также Au, Ag – методом спектроскопии с индукционно-связанной плазмой с масс-спектрометрическим окончанием (*ICP-MS*) на масс-спектрометре *X-Series II* с использованием международных и российских стандартов соответствующих пород. Изучение изотопного состава (*Rb*, *Sr*, *Sm* и *Nd*) проведено в лаборатории изотопной геохимии и геохронологии, на многоколлекторном термоионизационном масс-спектрометре *Sector* 54. Использованы методики и условия анализов принятые в ИГЕМ РАН. Результаты этих исследований приведены в таблицах 1–3. На основе результатов аналитических исследований построены классификационные и петрогенетические диаграммы и графики.

#### Таблица 1.

| Оксиды,                        |       | Номер образца |       |       |       |       |       |       |       |       |       |       |       |
|--------------------------------|-------|---------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| элементы                       | 106-1 | 106-3         | 106-4 | 106-7 | 110-2 | 110-4 | 109-1 | 109-3 | 109-8 | 111-3 | 111-4 | 111-6 | 111-7 |
| SiO <sub>2</sub>               | 64,97 | 61,29         | 62,92 | 60,99 | 56,75 | 60,62 | 66,14 | 64,44 | 64,14 | 58,60 | 67,01 | 67,42 | 64,21 |
| TiO <sub>2</sub>               | 0,62  | 0,79          | 0,64  | 0,71  | 1,16  | 0,86  | 0,35  | 0,73  | 0,69  | 0,51  | 0,56  | 0,48  | 0,65  |
| Al <sub>2</sub> O <sub>3</sub> | 15,7  | 16,31         | 16,61 | 16,53 | 18,00 | 17,14 | 17,07 | 15,94 | 16,68 | 13,53 | 16,22 | 16,21 | 16,40 |
| Fe <sub>2</sub> O <sub>3</sub> | 3,93  | 4,81          | 4,48  | 4,93  | 6,59  | 5,15  | 2,07  | 4,13  | 4,49  | 2,92  | 3,36  | 2,92  | 3,62  |
| MnO                            | 0,07  | 0,09          | 0,07  | 0,08  | 0,10  | 0,08  | 0,03  | 0,07  | 0,08  | 0,06  | 0,07  | 0,06  | 0,07  |
| MgO                            | 2,71  | 3,36          | 2,09  | 3,88  | 3,27  | 2,85  | 1,04  | 2,18  | 1,86  | 1,67  | 1,43  | 1,09  | 1,46  |
| CaO                            | 3,89  | 4,5           | 5,11  | 5,74  | 6,29  | 5,62  | 3,91  | 4,18  | 4,66  | 9,54  | 3,73  | 3,37  | 3,87  |
| Na <sub>2</sub> O              | 4,08  | 4,08          | 4,60  | 4,13  | 4,68  | 4,40  | 5,23  | 4,16  | 4,34  | 3,40  | 3,73  | 3,99  | 4,06  |
| K <sub>2</sub> O               | 2,39  | 2,34          | 2,32  | 2,14  | 1,75  | 1,60  | 1,81  | 2,31  | 2,27  | 2,46  | 2,52  | 2,42  | 2,47  |
| P <sub>2</sub> O <sub>5</sub>  | 0,18  | 0,23          | 0,27  | 0,22  | 0,29  | 0,23  | 0,13  | 0,19  | 0,22  | 0,18  | 0,15  | 0,11  | 0,18  |
| S                              | 0,02  | 0,02          | 0,02  | 0,02  | 0,02  | 0,02  | 0,02  | 0,02  | 0,02  | 0,02  | 0,02  | 0,02  | 0,02  |
| П,п,п,                         | 1,15  | 1,87          | 0,5   | 0,29  | 0,48  | 1,26  | 2,01  | 1,41  | 0,38  | 6,99  | 1,03  | 1,57  | 2,76  |
| Сумма                          | 99,71 | 99,69         | 99,63 | 99,66 | 99,38 | 99,83 | 99,81 | 99,76 | 99,83 | 99,88 | 99,83 | 99,66 | 99,77 |
| Cr                             | 78    | 95            | 67    | 120   | 122   | 129   | 27    | 76    | 44    | 44    | 47    | 41    | 46    |
| V                              | 72    | 79            | 84    | 62    | 130   | 130   | 33    | 94    | 91    | 39    | 59    | 66    | 79    |
| Со                             | 6     | 6             | 12    | 8     | 25    | 18    | 6     | 12    | 10    | -     | 9     | 8     | 10    |
| Cu                             | 10    | 10            | 10    | 14    | 29    | 9     | -     | 8     | 9     | 12    | 7     | 6     | 5     |
| Ni                             | 17    | 14            | 14    | 34    | 67    | 65    | 12    | 30    | 22    | 13    | 12    | 12    | 63    |
| Zn                             | 42    | 44            | 38    | 44    | 83    | 56    | 36    | 55    | 59    | 47    | 643   | 61    | 58    |
| Pb                             | 22    | 26            | 23    | 20    | 21    | 16    | 22    | 70    | 23    | 21    | 27    | 30    | 28    |
| Rb                             | 91    | 85            | 79    | 73    | 41    | 46    | 57    | 82    | 74    | 93    | 91    | 103   | 87    |
| Sr                             | 456   | 531           | 733   | 606   | 629   | 537   | 736   | 558   | 532   | 290   | 364   | 299   | 402   |
| Nb                             | 10    | 8             | 10    | 10    | 13    | 11    | -     | 10    | 10    | 14    | 13    | 10    | 11    |
| Y                              | 17    | 17            | 18    | 18    | 20    | 11    | 10    | 15    | 17    | 17    | 15    | 11    | 12    |
| Zr                             | 159   | 171           | 170   | 155   | 195   | 149   | 125   | 134   | 177   | 140   | 183   | 154   | 192   |

Результаты *RFA* вулканитов свиты Рухс-Дзуар (оксиды в мас, %; элементы в г/т)

| Таблица | 2. |
|---------|----|
|---------|----|

| Результаты | ICP-MS аналі | іза вулканитов | в свиты Р | ухс-Дзуар | (элементы в г/т | .) |
|------------|--------------|----------------|-----------|-----------|-----------------|----|
| •          |              | •              |           |           |                 | /  |

|          | Номер образца |          |          |          |          |          |          |          |  |  |
|----------|---------------|----------|----------|----------|----------|----------|----------|----------|--|--|
| Элементы | 109-1/11      | 109-3/11 | 109-8/11 | 110-2/11 | 110-4/11 | 111-4/11 | 111-6/11 | 111-7/11 |  |  |
| Li       | 18            | 26       | 14       | 12       | 17       | 30       | 26       | 21       |  |  |
| Be       | 2,6           | 2,9      | 2,9      | 1,9      | 1,7      | 2,9      | 2,9      | 2,7      |  |  |
| Sc       | 1,5           | 7,8      | 7,1      | 8,5      | 8,8      | 1,1      | 3,6      | 1,1      |  |  |
| Ti       | 1989          | 3279     | 4575     | 6833     | 4574     | 3434     | 2678     | 3693     |  |  |
| V        | 33            | 64       | 79       | 122      | 92       | 51       | 44       | 52       |  |  |
| Cr       | 24            | 62       | 46       | 208      | 116      | 41       | 32       | 29       |  |  |
| Mn       | 175           | 424      | 530      | 663      | 543      | 318      | 355      | 341      |  |  |
| Co       | 4,8           | 11       | 14       | 23       | 17       | 6,6      | 5,8      | 7,8      |  |  |
| Ni       | 8,8           | 28       | 27       | 71       | 67       | 8,6      | 10       | 12       |  |  |
| Cu       | <ПО           | 40       | 549      | 406      | 19       | 24       | 53       | 0,2      |  |  |
| Zn       | 30            | 41       | 58       | 76       | 57       | 49       | 36       | 45       |  |  |
| Rb       | 18            | 70       | 47       | 26       | 39       | 31       | 77       | 37       |  |  |
| Sr       | 535           | 554      | 406      | 512      | 532      | 113      | 197      | 176      |  |  |
| Y        | 7             | 13       | 12       | 12       | 9,5      | 5,7      | 8,8      | 6,4      |  |  |
| Nb       | 3             | 5        | 6        | 10       | 6,9      | 7,2      | 4,5      | 5,6      |  |  |
| Мо       | <ПО           | <ПО      | <ПО      | 0,71     | 0,38     | 5,4      | <ПО      | <ПО      |  |  |
| Ag       | 0,11          | 0,24     | 0,37     | 0,49     | 0,33     | 0,29     | 0,39     | 0,26     |  |  |
| Cd       | 0,03          | 0,10     | 0,19     | 0,21     | 0,11     | 0,09     | 0,13     | 0,13     |  |  |
| Cs       | 2,9           | 5,1      | 1,6      | 1,2      | 2,2      | 2,2      | 8,2      | 2,6      |  |  |
| Ba       | 292           | 458      | 349      | 397      | 414      | 144      | 285      | 201      |  |  |
| La       | 13            | 23       | 19       | 23       | 21       | 8,6      | 15       | 12       |  |  |
| Ce       | 26            | 50       | 43       | 51       | 41       | 20       | 32       | 27       |  |  |
| Pr       | 3,3           | 5,7      | 4,8      | 5,5      | 4,5      | 2,3      | 3,6      | 3,1      |  |  |
| Nd       | 12            | 21       | 19       | 21       | 17       | 8,8      | 13       | 12       |  |  |
| Sm       | 2,3           | 4,1      | 3,5      | 4,1      | 3,1      | 1,8      | 2,7      | 2,2      |  |  |
| Eu       | 0,87          | 1,1      | 1,0      | 1,2      | 0,92     | 0,47     | 0,71     | 0,64     |  |  |
| Gd       | 2,0           | 3,7      | 3,4      | 3,8      | 2,9      | 1,7      | 2,5      | 2,1      |  |  |
| Tb       | 0,22          | 0,43     | 0,39     | 0,44     | 0,31     | 0,20     | 0,28     | 0,22     |  |  |
| Dy       | 1,3           | 2,4      | 2,5      | 2,5      | 1,9      | 1,2      | 1,6      | 1,4      |  |  |
| Но       | 0,19          | 0,41     | 0,41     | 0,41     | 0,31     | 0,18     | 0,26     | 0,22     |  |  |
| Er       | 0,59          | 1,1      | 1,3      | 1,1      | 0,83     | 0,53     | 0,79     | 0,67     |  |  |
| Tm       | 0,056         | 0,14     | 0,14     | 0,12     | 0,082    | 0,039    | 0,075    | 0,057    |  |  |
| Yb       | 0,56          | 1,1      | 1,1      | 1,0      | 0,72     | 0,51     | 0,72     | 0,50     |  |  |
| Lu       | 0,050         | 0,12     | 0,13     | 0,10     | 0,079    | 0,039    | 0,080    | 0,042    |  |  |
| Hf       | 1,0           | 2,1      | 3,5      | 4,1      | 3,0      | 2,6      | 3,3      | 2,5      |  |  |
| Та       | 0,13          | 0,30     | 0,37     | 0,52     | 0,37     | 0,27     | 0,29     | 0,33     |  |  |
| W        | 0,50          | 1,1      | 0,71     | 1,0      | 0,67     | 0,75     | 0,81     | 0,75     |  |  |
| Pb       | 22            | 39,8     | 17       | 14       | 13       | 13       | 12       | 18       |  |  |
| Bi       | 0,32          | 0,36     | 0,15     | 0,059    | 0,14     | 0,31     | 0,23     | 0,23     |  |  |
| Th       | 4,8           | 8,3      | 6,1      | 6,1      | 6,2      | 3,1      | 5,9      | 4,4      |  |  |
| U        | 1,6           | 3,1      | 2,9      | 2,1      | 1,9      | 1,7      | 2,2      | 2,6      |  |  |

#### Таблица 3.

| № Обр, | Порода  | Rb,<br>ppm | Sr,<br>ppm | <sup>87</sup> Rb/ <sup>86</sup> Sr<br>±2σ | <sup>87</sup> Sr/ <sup>86</sup> Sr<br>±2σ | Nd,<br>ppm | Sm,<br>ppm | <sup>147</sup> Sm/ <sup>144</sup> Nd<br>±2σ | $^{143}$ Nd/ $^{144}$ Nd<br>$\pm 2\sigma$ | E <sub>Nd</sub> |
|--------|---------|------------|------------|-------------------------------------------|-------------------------------------------|------------|------------|---------------------------------------------|-------------------------------------------|-----------------|
| 109-1  | Дацит   | 54         | 820        | 0,191±1                                   | 0,704886±10                               | 13,1       | 2,4        | 0,1102±2                                    | 0,512722±6                                | 1,64±11         |
| 109-8  | Дацит   | 81         | 535        | 0,440±1                                   | 0,704691±10                               | 22,0       | 4,1        | 0,1136±1                                    | 0,512737±6                                | 1,93±11         |
| 110-2  | Андезит | 44         | 665        | 0,01897±6                                 | 0,704501±10                               | 25,5       | 4,8        | 0,1147±3                                    | 0,512768±6                                | 2,54±11         |
| 110-5  | Андезит | 44         | 535        | 0,02497±8                                 | 0,704401±9                                | 21,0       | 4,0        | 0,1166±1                                    | 0,512799±6                                | 3,14±11         |
| 111-6  | Дацит   | 115        | 340        | 0,987±2                                   | 0,705689±9                                | 16,5       | 3,2        | 0,1173±3                                    | 0,512645±6                                | 0,14±11         |

Результаты изотопного (Rb, Sr, Sm, Nd) анализа вулканитов свиты Рухс-Дзуар

## Петрографическая характеристика вулканитов

Изученные обломки вулканитов представлены лавами андезитового, дацитового, составов и пемзами (рис. 2, 3). В единичных случаях обнаружены обломки трахиандезибазальтов и пропилитов. Андезиты представлены пироксеновыми, амфибол-пироксеновыми и амфибол-пироксен-биотитовыми разновидностями. Микроструктура пород порфировая, сериально-порфировая, гломеропорфировая. Во вкрапленниках установлены: плагиоклаз, пироксен, реже амфибол и биотит. Плагиоклаз присутствует в виде зональных кристаллов нескольких генераций. Первая генерация – ситовидные кристаллы лабрадора (рис. 3-5), размером до 2,0×2,4 мм, содержащие включения авгита, реже амфибола. Вторая генерация – это кристаллы андезина, размером до 0,2×1,5 мм, которые иногда заметно корродированы (рис. 3-2). Пироксен представлен бесцветными либо буроватыми кристаллами авгита и клиноэнстатита и их реликтами размером до 0,8×1,2 мм. Амфибол – «базальтическая» роговая обманка, часто с опацитовой или пироксеновой каемкой. Биотит, размером до 1,5 мм, замещается агрегатом мелких зерен плагиоклаза, пироксена, рудного минерала. Основная масса микролитовая, гиаломикролитовая, реже микропойкилитовая и состоит из плагиоклаза, амфибола, рудного минерала и стекла. В андезитах отмечаются субизометричные включения размером до 5-6 мм, состоящие из кристаллов пироксена и рудного минерала, или кристаллов плагиоклаза, пироксена, амфибола, рудного минерала, иногда с карбонатом, хлоритом и клиноцоизитом. Дациты представлены амфиболовыми, биотит-амфиболовыми с примесью пироксена и пироксеновыми разновидностями. Структура пород сериально-порфировая, и невадитовая. В амфиболовых и биотит-амфиболовых разновидностях во вкрапленниках присутствуют: плагиоклаз (андезин) двух генераций, пироксен, амфибол, биотит и кварц. Ранний плагиоклаз – кристаллы до 2,0×2,5 мм с включениями бурой роговой обманки. В периферийной зоне отмечаются его срастания с биотитом. Плагиоклаз второй генерации – кристаллы до 0,2×0,7 мм, в срастаниях с пироксеном. Амфибол - «базальтическая» роговая обманка, иногда с пироксеновой каемкой. Биотит – пластинки размером до 1,5 мм, часто с плагиоклаз-пироксеновой каемкой. Кварц - субизометричные выделения размером до 2,0 мм, корродируемые основной массой и часто с пироксеновой каемкой. В пироксеновых разновидностях дацитов, состав ранних кристаллов плагиоклаза – основной

андезин-лабрадор, поздних – олигоклаз-андезин. Пироксен – авгит, по которому развивается бурая роговая обманка. Основная масса микролитовая, гиаломикролитовая, пилотакситовая, реже микропойкилитовая, состоящая из микролитов плагиоклаза, кварца, амфибола, в микропустотках присутствуют пластинки тридимита. В дацитах встречаются «инородные» высокоглиноземистые включения, с зеленой шпинелью, силлиманитом, корундом (рис. 3-6). **Пемзы и пеплы** имеют дацитовый состав и сложены кристаллами и обломками кварца, плагиоклаза, биотита, амфибола, реже пироксена, погруженных в флюидально-пористую, гиалиновую основную массу. **Пропилиты** – обладают реликтовой порфировой структурой. Плагиоклаз вкрапленников замещен карбонатным, карбонат-альбит-монтмориллонит-хлоритовым или гидрослюдистым агрегатом. По основной массе развивается хлоритоподобный минерал. Микропустотки выполнены карбонатом, клиноцоизитом и цоизитом.

## Петрохимические, геохимические и изотопные характеристики пород

Фигуративные точки составов вулканитов СРД (табл. 1) на классификационной диаграмме вулканических пород  $(Na_2O+K_2O)-SiO_2$  (рис. 2) сгруппированы преимущественно в поле андезита и дацита, но единичные пробы попадают в поля риодацита, трахидацита, трахиандезита и трахиандезибазальта. Это низкотитанистые, в основном, умеренно и частично высококалиевые породы, для которых характерна прямая корреляция  $Na_2O$ ,  $Na_2O+K_2O$  и обратная корреляция  $TiO_2$ , CaO, MgO с  $SiO_2$ (рис. 4). Отношение Na<sub>2</sub>O/K<sub>2</sub>O варьирует в пределах от 1,5 до 3,0. Тип щелочности калиево-натриевый, а в более кислых разновидностях – существенно натриевый. На диагностических диаграммах фигуративные точки составов пород расположены: на диаграмме FeO/(FeO+MgO)-SiO<sub>2</sub> в поле магнезиальных образований (рис. 4); на диаграмме (Sr/Y-Yppm) – в поле адакитов и в зоне неопределенности с типичными породами островных дуг (рис. 5a); на диаграмме ((La/Yb)<sub>N</sub>-Yb<sub>N</sub>) – в поле (Adakites high – AlTTD) высокоглиноземистых адакитов, рядом с трендом плавления 10% гранатового амфиболита (рис. 5б); на диаграмме Mg# – SiO<sub>2</sub> – в поле и вблизи поля (Adakite from N-AVZ) адакитов Северных Андийских вулканических зон (рис. 5в); на диаграмме *Th/Yb* – *Gd/Yb* – вдоль тренда (*Slab melts*) слэбовых расплавов (рис. 5г).

По геохимическим данным, полученным методом *ICP-MS* (табл. 2), построены спектры распределения *REE* (рис. 5е) и мультиэлементные спектры (рис. 5ж). На редкоземельных спектрах, нормированных по хондриту [Sun, McDonough, 1989], отмечается фракционирование редких земель: обогащение легкими *LREE*, обеднение *HREE*.  $La^{\mu}/Lu^{\mu}$  отношения в дацитах равно 20 и 25. в андезитах – 26 и 52. Соответственно  $La^{\mu}/Yb^{\mu} - 14$  и 18.  $La^{\mu}/Sm^{\mu} - 3,5$  и 3,9;  $Gd^{\mu}/Yb^{\mu} - 2$  и 3. Величина количественного дефицита европия, используемая для оценки степени дифференциации расплава, характеризуется коэффициентом  $Eu/Eu^*$  где  $Eu^* = \sqrt{(Sm_{nop.}/Sm_{xohd.} \times Gd_{nop.}/Gd_{xohd})}$ . *Eu/Eu*\* в дацитах равно 1,02; в андезитах – 0,93, что указывает на отсутствии заметной дифференциации, со значительной ролью фракционирования плагиоклаза. Мультиэлементные спектры, нормированные по *N-MORB*, свидетельствуют о заметном обогащении пород легкими литофильными элементами (*LILE*) и обеднении высокозарядными элементами с высокой валентностью (*HFSE*). От-

мечается негативная аномалия тугоплавких элементов (Nb, Ta) и заметные минимумы в содержании фосфора и титана. Сравнение изученных образцов с эталонами кайнозойских вулканов Азии [Рассказов и др., 2012], образовавшихся из слебовых и надслебовых источников, показывает, что вулканиты СРД по содержанию целого ряда элементов близки к ним. Однако, от основных по составу пород, имеющих слэбовый источник, они отличаются наличием негативной Ta-Nb аномалии и отсутствием положительной аномалии Nd. С породами, образованными из надслэбовых источников, они имеют общие негативные аномалии Ta, Nb, Ti, но заметно отличаются меньшими содержаниям LILE, LREE, обогащение которыми обычно приписывается воздействию водного флюида. Величины стронциевых отношений (<sup>87</sup>Sr/<sup>86</sup>Sr) в андезитах, дацитах свиты Р-Д варьируют в пределах от 0,704401+9 до 0,705689±9, значения (143Nd/144Nd) – в пределах от 0,512645±6 до 0,512799±6 (табл. 3). По этим показателям вулканиты СРД вполне сопоставимы с миоценовыми адакитовыми гранитоидами Центрального Андского металлогенического пояса в Чили ( ${}^{87}Sr/{}^{86}Sr = 0,703761 - 0,704118$ ;  ${}^{143}Nd/{}^{144}Nd = 0,512758 - 512882$ ) [Гусев, 2014]. На диаграмме  $eNd(t) - ({}^{87}Sr/{}^{86}Sr)$  (рис. 5д), фигуративные точки располагаются в поле и вблизи поля (Adakitic rocks derived from thickened lower crust) адакитов сформировавшихся при плавлении континентальной нижней коры.

Для выявления потенциальной рудоносности вулканитов СРД проведено сравнение содержаний в них рудных элементов (табл. 1, 2) с кларковыми концентрациями этих же элементов в средних по составу пород, т.е. проведен расчет коэффициента концентрации (Кк) для конкретного элемента. Установлено, что содержания большинства рудных элементов близки к кларковым величинам. В единичных случаях отмечено повышение содержаний молибдена до 5,4 г/т (Кк – 5) и меди до 406 и 549 г/т (Кк – 12). Установлены стабильно повышенные содержания серебра (Кк–4,4) и висмута (Кк-22). Проведенные дополнительные анализы (методом *ICP-MS*) четырех образцов (андезиты – 106–4/10, 110–4/11; пропилиты – 106–2/10, 106–3), для определения в них содержания Ag и Au, показали, что: содержание серебра в андезитах составило 0,30–0,38 г/т (Кк – 4,8); в пропилитах – 0,26–0,43 г/т (Кк – 46,4); в пропилитах – 0,12–0,35 г/т (Кк – 83,9).



Рис. 2. Положение вулканитов СРД на диаграмме ( $Na_2O+K_2O$ ) –  $SiO_2$ 



Рис. 3-1. Амфиболовый андезит. Диагональ снимка. (Д 3,5 мм)



Рис. 3-2. Амфибол-пироксеновый андезит. (Д 3,5 мм)



Bt Amf

Рис. 3-3. Пироксеновыйдацит. (Д 3,5 мм)





Рис. 3-5. Кристалл лабрадора с ситовидным ядром. (Д 3,5 мм)

Рис. 3-6. Включение со шпинелью и силлиманитом. (Д 3,5 мм)

Рис. 3. Микрофотографии вулканитов. СРД



Рис. 4. Составы вулканитов на вариационных диаграммах SiO<sub>2</sub> – петрогенные элементы



Рис. 5. Составы вулканитов СРД на петрогенетических диаграммах

## Обсуждение результатов

Петрографическое изучение показало, что вулканиты СРД представлены, преимущественно, дацитами и андезитами. Они содержат: 1) Резорбированные кристаллы амфибола, биотита, кварца с реакционными каймами, образованными в результате их термического разложения и окисления (рис. 3-1, 3-2, 3-4); 2) «Ситовидные» плагиоклазы с включениями стекла (рис. 3-5), что указывает на неравновесный скелетный рост кристаллов из «переохлажденного» расплава, либо их кристаллизацию в условиях декомпрессии; 3) Редкие «инородные» высокоглиноземистые включения (рис. 3-6). Все это указывает на сложную эволюцию расплавов, из которых образованы вулканиты СРД.

Рассматриваемые породы характеризуются низкими содержаниями *Nb; Ta;* Y < 18 г/т; Yb = 0,5 - 1,1 г/т; и высокими величинами отношений: Sr/Y и La<sup>H</sup>/Yb<sup>H</sup> = 14 и 18. Характер распределения элементов на мультиэлементных и редкоземельных спектрах указывают на то, что имел место процесс фракционирования редких земель, обогащения пород *LILE, LREE* при обеднении *HFSE* и тяжелых *REE*. На диагностических диаграммах фигуративные точки составов вулканитов СРД группируются в полях и вблизи полей адакитов (*Sr/Y-Yppm*), (*Mg# – SiO*<sub>2</sub>). По-видимому, они могут быть производными слэбовых расплавов (*Th/Yb – Gd/Yb*), либо производными от плавления континентальной нижней коры  $eNd(t) - ({}^{87}Sr/{}^{86}Sr)$ . Величины изотопных отношений:  ${}^{87}Sr/{}^{86}Sr = 0,704401\pm9 - 0,705689\pm9$ ;  ${}^{143}Nd/{}^{144}Nd = 0,512645\pm6 - 0,512799\pm6$ , указывают на наличие в породах мантийной компоненты.

В настоящее время «адакиты» изучены во многих регионах земного шара. К ним относят низкокалиевые вулканиты средне-кислого состава, среди которых выделяют низко- и высококремнистые разности. Первые отличаются повышенным содержанием MgO, Gr, Ni. В целом, для адакитов характерны: высокие содержания  $SiO_2 \ge 56\%$ ,  $Al_2O_3 \ge 15\%$ , Sr, LILE, V, Cr; низкие содержания Y < 18 г/т, Yb < 1,8 г/т, *HFSE, Nb, Ta*; и высокие величины отношений Sr/Y и  $La^{\mu}/Yb^{\mu} > 8-10$  и низкие *K/La, Rb/La, Ba/La* [Туркина, 2014; Гусев, 2014; Авдеенко, 2011]. На основании выше изложенного мы считаем, что изученные породы (хотя бы частично) обладают характеристиками, свойственными адакитам. Обычно адакиты рассматривают как: 1) результат плавления базальтов молодой (<25 млн лет) и относительно горячей субдуцируемой плиты [Defant, Drummond, 1990]; 2) результат косой субдукциии и трансформного взаимодействия плит, обеспечивающего дополнительный разогрев [Авдеенко, 2011]; 3) плавление пород мантийного клина, метасоматизированного адакитовым расплавом [Bourdon, Eissen, et al., 2002]; 4) результат плавления подплитных метабазитов в подошве мощной континентальной коры [Petford, Atherton, 1996]. В результате моделирования определены условия образования адакитовых магм путем частичного плавления слеба. Они формируются на глубинах 25-90 км при давлении ниже стабильности граната (6-28 GPa) и температурах до 1050 °C. При этом большое значение придается восходящему флюидному мантийному потоку. С интрузивными адакитовыми породами доказана связь порфировых и эпитермальных медных и медно-золоторудных и золото-серебрянных месторождений в Чили и на Филлипинах, многих медно-порфировых месторождений в Восточной Азии и в других регионах мира, а также различные типы золоторудного оруденения [Гусев, 2014].

На основании вышеизложенного можно предположить, что появление пород с адакитовыми характеристиками в юго-западной части ТККП обусловлено проявле-

нием интенсивного предакчагыльского тектогенеза, в результате которого к поверхности прорывались расплавы, сформированные при плавлении подплитных метабазитов Черноморско–Закавказского микроконтинента. На это указывает близость геохимических характеристик вулканитов СРД с породами Кельского и Казбкеского вулканических районов и заметные их отличия от пород Эльбрус–Чегемской вулканической области [Газеев, Гурбанов и др., 2017; Газеев, Мясников и др., 2011]. Созданные этими расплавами вулканические постройки разрушались акчагылапшеронским морем и вновь возрождались на протяжении длительного отрезка времени. В пределах вулканических построек, имели место процессы вторичного изменения (пропилитизации) пород .В последующий, после апшерона, период времени, вулканическая активность здесь не возрождалась и остатки вулканических построек постепенно были погребены в недрах Осетинской впадины ТККП.

В результате геохимических исследований были выявлены повышенные содержания серебра, золота и висмута в вулканитах СРД, максимальные концентрации золота установлены в пропилитизированных вулканитах. Эти данные согласуются с результатами исследований А.Б. Дзайнукова, показавшими присутствие слабо окатанных очень мелких чешуек самородного золота в песчано-гравийных смесях в долинах рек Гизельдон, Ардон, Архонка, Дур-Дур, Камбилеевка, Терек (в районе «Эльхотовских ворот») в разрезах СРД. Так, по данным А.Б. Дзайнукова, в Гизельском карьере ПГС, в песчано-глинистой фракции (-0,5 мм) аллювиальных отложений содержание тонкого и сверхтонкого золота колеблется от 162 до 300 мг/м<sup>3</sup>. Выход фракции около 6%. В песчаной фракции (+0,5-5,0 мм), составляющей 20% от общей массы аллювия, содержание золота составило 0,0453 г/т или 67,8 мг/м<sup>3</sup>. Таким образом, среднее содержание золота в песчано-глинистой фракции аллювия (выход ее 26%) составило 106 мг/м<sup>3</sup>. Запасы разведанных месторождений песчаногравийных смесей (ПГС) в Республике Северная Осетия-Алания составляют более 480 млн м<sup>3</sup>, в том числе в них песчано-глинистой фракции – 124,8 млн м<sup>3</sup>. Ресурсы тонкого и сверхтонкого золота в этих запасах оцениваются примерно в 12,5 т. На основании выше изложенного можно предположить, что источником золота могли быть зоны вторичного изменения (пропилитизации) в пределах вулканических аппаратов, служивших поставщиками вулканического материала для СРД.

## Заключение

1. Полученные в процессе комплексного изучения обломков вулканических пород свиты «Руах-Дзуар», распространенных в юго-западной части ТККП, геохимические, изотопные и петрографические данные показали, что вулканиты преимущественно, представлены андезитами и дацитами, прошедшими сложный эволюционный путь. Для них характерны такие явления как: рост кристаллов в условиях декомпрессии; термическое разложение кристаллов, автосмешивание расплавов; присутствие в расплавах мантийной составляющей ( ${}^{87}Sr/{}^{86}Sr$ ) = 0,704401±9 – 0,705689±9;  ${}^{143}Nd/{}^{144}Nd$  = 0.512645±6 – 0,512799±6); и контаминация расплавов коровыми компонентами. Имел место процесс фракционирования редких земель, обогащения пород *LILE, LREE* при обеднении *HFSE* и тяжелыми *REE*.

2. Установлено, что вулканиты обладают характеристиками, близкими к адакитовым. Это подтверждается высокими содержаниями  $SiO_2 \ge 56.\%$ ,  $Al_2O_3 \ge 15\%$ , Sr, LILE, низкими содержаниями Nb, Ta, Y<18 г/т, Yb = 0,5–1,1 г/т, высокими величинами отношений Sr/Y,  $La^{\mu}/Yb^{\mu} = 14-18$ , положением фигуративных точек на петрогенетических диаграммах (Sr/Y-Y г/т), ((La/Yb)<sub>N</sub> – Yb<sub>N</sub>), eNd(t) – (<sup>87</sup>Sr/<sup>86</sup>Sr). 3. Показано, что вулканиты СРД характеризуются повышенными содержаниями золота, серебра, висмута. Концентрации золота повышаются в процессе пропилитизации вулканитов.

Работа поддержана Госзаданием ИГЕМ РАН «Петрология и минерагения магматизма внутриплитных и посторогенных обстановок: роль литосферных и астеносферных источников в формировании расплавов» и подготовлена при поддержке гос. темы НИР ВНЦ РАН № 0196-2015-0001 и темы НИОКТР: АААА-А17-117060910044-5 в КНИО ВНЦ РАН.

## Литература

1. Авдеенко Г.П., Палуева А.А., Кувикас О.В. Адакиты в зонах субдукции Тихоокеанского кольца. Обзор и анализ геодинамических условий образования // Вестник КРАУНЦ. Науки о земле. – 2011. – №1. Вып. 17. – С. 45–58.

2. Белуженко Е.В., Коваленко Е.И., Письменная Н.С. Стратиграфия олигоценэоплейстоценовых отложений Северной Осетии (лист К-38-IX) // Проблемы геологии, геоэкологии и минерагении юга России и Кавказа / Мат. V Междунар. науч. конф. – Новочеркасск. – 2009. – С. 34–39.

3. Газеев В.М., Гурбанов А.Г., Лексин А.Б., Докучаев А.Я., Гурбанова О.А. Кельский вулканический район (республика Южная Осетия): геохимические особенности пород и геодинамическая интерпретация // Геология и Геофизика Юга России. – 2017. – №2. – С. 26–39.

4. Газеев В.М., Мясников А.В., Лексин А.Б., А.Б. Докучаев А.Б., Гурбанов А.Г. Зональность новейших вулканитов Большого Кавказа и ее геодинамическая интерпретация // Тезисы V Всероссийский Симпозиум по вулканологии и палеовулканологии. – Екатеринбург. – 21–27 ноября 2011. – С. 365–367.

5. Гусев А.И. Петрология адакитовых гранитоидов. – М.: ИД «Академия естествознания», 2014. – 133 с.

6. Клавдиева Н.В. Тектоническое погружение Предкавказских краевых прогибов в кайнозое // Дисс. на соиск. уч. степени к.г-м.н. МГУ. – 2007. – 179 с.

7. Марков А.Н., Самойлович В.Л., Копыльцов А.И. Уточнение геологического строения юрских подсолевых отложений Терско-Каспийского прогиба и оценка перспектив нефте-газоносности. – Ессентуки: СК ТГФ, 2000. – С. 110–172.

8. Рассказов С.В., Чувашова И.С., Ясныгина Т.А. и др. Калиевая и натриевая вулканические серии в кайнозое Азии. – Новосибирск: Акад. изд. «ГЕО», 2012. – 343 с.

9. Туркина О.М. Лекции по геохимии магматического и метаморфического процессов. – Новосибирск: РИЦ НГУ, 2014. – 118 с.

10. Bourdon E., Eissen J.P., Monzier M. et al. Adakite-like lavas from Antisana Volcano (Ecvador): Evidence for slab melt metasomatism beneath Andean Northern Volcanic Zone // Journal of Petrology. – 2002. – V. 43. №2. – P. 199–219.

11. Defant M.J., Drummond M.S. Derivation of some modern arc magmas by melting of young subducted lithosphere // Nature. – 1990. – V. 347. №4. – P. 662–665.

12. Petford N., Atherton M. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru // J. Petrol. – 1996. – V. 37. №6. – P. 1491–1521.

13. Sun S.S., McDonough W.F. Chemical and isotopic systematic of oceanic basalts // Geol. Spec. Publ. – 1989. – №42. – P. 313–345. DOI: 10.23671/VNC.2018.3.16542

# VOLCANITES WITH THE ADAKITE CHARACTERISTICS FROM UPPER PLIOCENE CROSS SECTIONS OF TERSKO-CASPIAN FOREDEEP DEPRESSION

© 2018 V.M. Gazeev<sup>1, 2</sup>, Sc. Candidate (Geol.-Min.), A.G. Gurbanov<sup>1, 2</sup>, Sc. Candidate (Geol.-Min.), Yu.V. Goltsman<sup>1</sup>, Sc. Candidate (Geol.-Min.), T.I. Oleiynikova<sup>1</sup>, A.B. Lexin<sup>1</sup>, A.Ya. Dokuchaev<sup>1</sup>, Sc. Candidate (Geol.-Min.)

<sup>1</sup>Institute of geology of ore deposits, petrography, mineralogy and geochemistry RAS, Russia, 119017, Moscow, Staromonetny Lane, 35;

<sup>2</sup>Vladikavkaz Scientific Center of the Russian Academy of Sciences, Russia, 362027, RNO-Alania, Vladikavkaz, Markusa Str., 22, e-mail: gurbanov@igem.ru

In the Osetian basin of Tersko-Caspian foredeep depression in a section of akchagil-apsheron sediments the terrane with a large number of redeposited volcanic rocks is bedding. The petrographical and geochemical investigation of these volcanic rocks was done. Results of XRF, ICP MS and isotope (*Rb*, *Sr*, *Sm*, *Nd*)) analyses were presented. It was shown, that volcanites are considerate adakite-like characteristics. The potential ore content of these rocks was done. We are suppose that in zones of secondary alteration (propylitization) within the volcanic apparatus, which served as a sources of the volcanic rocks removal, can occurs a gold-silver with bismuth mineralization.

**Keywords.** Tersko-Caspian foredeep depression, adakite-like volcanic rocks, petrography, geochemistry, geodynamical reconstructions, potential ore content.

## References

1. Avdeenko G.P., Palueva A.A., Kuvikas O.V. Adakity v zonah subdukcii Tihookeanskogo kol'ca. Obzor i analiz geodinamicheskih uslovij obrazovanija [Adakites in the subduction zones of the Pacific ring. Overview and analysis of geodynamic conditions of education]. Vestnik KRAUNC. Nauki o zemle. 2011. No.1. Issue 17. Pp. 45–58. (in Russian)

2. Beluzhenko E.V., Kovalenko E.I., Pis'mennaja N.S. Stratigrafija oligocen-jeoplejstocenovyh otlozhenij Severnoj Osetii (list K-38-IX) [Stratigraphy of Oligocene-Eopleistocene deposits of North Ossetia (sheet K-38-IX)]. Problemy geologii, geojekologii i mineragenii juga Rossii i Kavkaza / Mat. V Mezhdunar. nauch. konf. Novocherkassk. 2009. Pp. 34–39. (in Russian)

3. Gazeev V.M., Gurbanov A.G., Leksin A.B., Dokuchaev A.Ja., Gurbanova O.A. Kel'skij vulkanicheskij rajon (respublika Juzhnaja Osetija): geohimicheskie osobennosti porod i geodinamicheskaja interpretacija [Kel volcanic region (South Ossetia republic): geochemical features of rocks and geodynamic interpretation]. Geologija i Geofizika Juga Rossii. 2017. No.2. Pp. 26–39. (in Russian)

4. Gazeev V.M., Mjasnikov A.V., Leksin A.B., A.B. Dokuchaev A.B., Gurbanov A.G., Zonal'nost' novejshih vulkanitov Bol'shogo Kavkaza i ee geodinamicheskaja interpretacija [Zoning of the newest volcanics of the Greater Caucasus and its geodynamic interpretation]. Tezisy V Vserossijskij Simpozium po vulkanologii i paleovulkanologii. Ekaterinburg. 21–27 nojabrja 2011. Pp. 365–367. (in Russian)

5. Gusev A.I. Petrologija adakitovyh granitoidov. [Petrology of adakite granitoids]. M. ID «Akademija estestvoznanija», 2014. 133 p. (in Russian) 6. Klavdieva N.V. Tektonicheskoe pogruzhenie Predkavkazskih kraevyh progibov v kajnozoe [Tectonic immersion of the Precaucasian marginal troughs in the Cenozoic]. Diss. na soisk. uch. stepeni k.g-m.n. MGU. 2007. 179 p. (in Russian)

7. Markov A.N., Samojlovich V.L., Kopyl'cov A.I. Utochnenie geologicheskogo stroenija jurskih podsolevyh otlozhenij Tersko-Kaspijskogo progiba i ocenka perspektiv nefte-gazonosnosti. [Refinement of the geological structure of the Jurassic subsalt deposits of the Tersko-Caspian trough and an assessment of the prospects for oil and gas content.]. Essentuki: SK TGF. 2000. Pp. 110–172. (in Russian)

8. Rasskazov S.V., Chuvashova I.S., Jasnygina T.A. i dr. Kalievaja i natrievaja vulkanicheskie serii v kajnozoe Azii. [Potassium and sodium volcanic series in the Cenozoic of Asia.]. Novosibirsk: Akad. izd. «GEO». 2012. 343 p. (in Russian)

9. Turkina O.M. Lekcii po geohimii magmaticheskogo i metamorficheskogo processov. [Lectures on the geochemistry of magmatic and metamorphic processes]. Novosibirsk: RIC NGU, 2014. 118 p. (in Russian)

10. Bourdon E., Eissen J.P., Monzier M. et al. Adakite-like lavas from Antisana Volcano (Ecvador): Evidence for slab melt metasomatism beneath Andean Northern Volcanic Zone // Journal of Petrology. – 2002. – V. 43. №2. – P. 199–219.

11. Defant M.J., Drummond M.S. Derivation of some modern arc magmas by melting of young subducted lithosphere // Nature. – 1990. – V. 347. №4. – P. 662–665.

12. Petford N., Atherton M. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru // J. Petrol. – 1996. – V. 37. №6. – P. 1491–1521.

13. Sun S.S., McDonough W.F. Chemical and isotopic systematic of oceanic basalts // Geol. Spec. Publ. – 1989. – №42. – P. 313–345.